Matrix Equalities and Inequalities Involving Khatri-rao and Tracy-singh Sums
نویسندگان
چکیده
The Khatri-Rao and Tracy-Singh products for partitioned matrices are viewed as generalized Hadamard and generalized Kronecker products, respectively. We define the KhatriRao and Tracy-Singh sums for partitioned matrices as generalized Hadamard and generalized Kronecker sums and derive some results including matrix equalities and inequalities involving the two sums. Based on the connection between the Khatri-Rao and Tracy-Singh products (sums) and use mainly Liu’s, Mond and Pečarić’s methods to establish new inequalities involving the Khatri-Rao product (sum). The results lead to inequalities involving Hadamard and Kronecker products (sums), as a special case.
منابع مشابه
Inequalities Involving Khatri-rao Products of Positive Semidefinite Hermitian Matrices
In this paper, we obtain some matrix inequalities in Löwner partial ordering for Khatri-Rao products of positive semidefinite Hermitian matrices. Furthermore, we generalize the Oppenheim’s inequality, with which we will improve some recent results.
متن کاملEla Some Inequalities for the Khatri - Rao Product of Matrices
Several inequalities for the Khatri-Rao product of complex positive definite Hermitian matrices are established, and these results generalize some known inequalities for the Hadamard and Khatri-Rao products of matrices.
متن کاملتخمین جهت منابع با استفاده از زیرفضای کرونکر
This paper proceeds directions of arrival (DOA) estimation by a linear array. These years, some algorithms, e.g. Khatri-Rao approach, Nested array, Dynamic array have been proposed for estimating more DOAs than sensors. These algorithms can merely estimate uncorrelated sources. For Khatri-Rao approach, this is due to the fact that Khatri-Rao product discard the non-diagonal entries of the corre...
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملOn the Restricted Isometry of the Columnwise Khatri-Rao Product
The columnwise Khatri-Rao product of two matrices is an important matrix type, reprising its role as a structured sensing matrix in many fundamental linear inverse problems. Robust signal recovery in such inverse problems is often contingent on proving the restricted isometry property (RIP) of a certain system matrix expressible as a Khatri-Rao product of two matrices. In this work, we analyze ...
متن کامل